Journal of Radioanalytical and Nuclear Chemistry, vol.333, no.10, pp.5161-5171, 2024 (SCI-Expanded, Scopus)
Hydrogen generation was obtained with homogeneous n-C6H14, 88.5% n-C6H14+11.5% H2O, 50% n-C6H14+50% H2O and 11.5% n-C6H14+88.5% H2O and heterogeneous Al2O3+n-C6H14, Al2O3+88.5% n-C6H14+11.5% H2O, Al2O3+50% n-C6H14+50% H2O and Al2O3+11.5% n-C6H14+88.5% H2O systems. Hydrocarbons (methane, ethane, propane, butane, pentane, and hexane) and other organic molecules (methanol, acetaldehyde, and acetic acid) were also used for optimization. The activation energies were 3.50 and 3.74 kJ/mol for Al2O3+n-C6H14 and Al2O3+C6H14+H2O systems. Maximum hydrogen produced was 54.0×1017 molecules/g.