Thermal and entropy characteristics of mixed convection flow of Cross-nanofluid over a Falkner–Skan wedge with nonlinear radiation: A sensitivity analysis


Rehman M. I. U., Hamid A., Simic V., PAMUCAR D.

Journal of Thermal Analysis and Calorimetry, 2025 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Nəşr tarixi: 2025
  • Doi nömrəsi: 10.1007/s10973-025-15078-8
  • jurnalın adı: Journal of Thermal Analysis and Calorimetry
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Chimica, Compendex, Index Islamicus, INSPEC
  • Açar sözlər: Cross-nanofluid model, Entropy generation, Mixed convection, Nonlinear thermal radiation, Response surface methodology-based multi-objective optimization, Uniform heat generation/absorption
  • Adres: Bəli

Qısa məlumat

This study investigates the heat and mass transfer in the cross-nanofluid model. It holds great importance in numerous applications such as jet engine coatings, thermal storage, fuel efficiency, heat exchangers, spacecraft thermal control, drug delivery, and electronic cooling. Entropy expression is explored by examining heat source/sink, nonlinear thermal radiation, and viscous dissipation. Temperature and concentration are considered in terms of thermal and solutal slip conditions. Thermophoretic and Brownian motion aspects are considered in the nanofluid model. Appropriate similarity transformations are utilized to reduce the governing partial differential equations into ordinary differential equations and are tackled numerically by employing MATLAB’s built-in BVP4C solver. The effect of various parameters on temperature, friction drag, entropy generation, velocities, Bejan number, heat, and mass transport rate is discussed graphically. Furthermore, the optimization of the thermal transport rate is performed via sensitivity evaluations using the response surface methodology. The opposite behavior is noticed for entropy generation and Bejan number via higher values of the Hartman number and Eckert number. The thermal transport rate is more sensitive to the thermophoretic parameter than the temperature difference parameter and the Eckert number, particularly when the Eckert number and temperature difference parameter are at a high level.