Approximate controllability of the nonlinear third-order dispersion equation


Sakthivel R., Mahmudov N., Ren Y.

Applied Mathematics and Computation, vol.217, no.21, pp.8507-8511, 2011 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 217 Say: 21
  • Nəşr tarixi: 2011
  • Doi nömrəsi: 10.1016/j.amc.2011.03.054
  • jurnalın adı: Applied Mathematics and Computation
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.8507-8511
  • Açar sözlər: Approximate controllability, Fixed point theorem, Korteweg-de Vries equation, Nonlinear dispersion system, Semigroup theory
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this paper, we consider the approximate controllability of nonlinear third-order dispersion equation of the form∂w∂t(x,t)+ ∂3w∂x3(x,t)=(Gu)(x,t)+f(t,w(x,t))on the interval 0 ≤ x ≤ 2π, t ≥ 0 with initial and periodic boundary conditionsw(x,0)=0,∂kw∂xk(0,t)= ∂kw∂xk(2π,t),k=0,1,2.We study the approximate controllability for nonlinear dispersion system under the assumption that the corresponding linear control system is approximately controllable. The solutions are given by a variation of constants formula which allows us to study the approximate controllability for nonlinear dispersion systems. Based on the semigroup theory and fixed point approach, sufficient conditions are formulated and proved. © 2011 Elsevier Inc. All rights reserved.