Optimal control of differential inclusions with endpoint constraints and duality


Mahmudov E.

Applicable Analysis, vol.102, no.17, pp.4717-4732, 2023 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 102 Say: 17
  • Nəşr tarixi: 2023
  • Doi nömrəsi: 10.1080/00036811.2022.2136073
  • jurnalın adı: Applicable Analysis
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Computer & Applied Sciences, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Səhifə sayı: pp.4717-4732
  • Açar sözlər: duality, Endpoint constraints, Euler–Lagrange, Hamiltonian, necessary and sufficient, support function
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Bəli

Qısa məlumat

The article considers a high-order optimal control problem and its dual problems described by high-order differential inclusions. In this regard, the established Euler–Lagrange type inclusion, containing the Euler–Poisson equation of the calculus of variations, is a sufficient optimality condition for a differential inclusion of a higher order. It is shown that the adjoint inclusion for the first-order differential inclusions, defined in terms of a locally adjoint mapping, coincides with the classical Euler–Lagrange inclusion. Then the duality theorems are proved.