Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay


Sakthivel R., Nieto J. J., Mahmudov N.

Taiwanese Journal of Mathematics, vol.14, no.5, pp.1777-1797, 2010 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 14 Say: 5
  • Nəşr tarixi: 2010
  • Doi nömrəsi: 10.11650/twjm/1500406016
  • jurnalın adı: Taiwanese Journal of Mathematics
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.1777-1797
  • Açar sözlər: Approximate controllability, Impulsive differential equations, Neutral equations, Resolvent operators, Stochastic differential equations
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this paper, we consider approximate controllability for nonlinear deterministic and stochastic systems with resolvent operators and unbounded delay. We study the problem of approximate controllability of deterministic nonlinear differential equations with impulsive terms, resolvent operators and unbounded delay. Next, approximate controllability results are being established for a class of nonlinear stochastic differential equations with resolvent operators in a real separable Hilbert spaces. By using the resolvent operators and fixed point technique, sufficient conditions have been formulated and proved. In this paper, we prove the approximate controllability of nonlinear deterministic and stochastic control systems under the assumption that the corresponding linear system is approximately controllable. Examples are presented to illustrate the utility and applicability of the proposed method.