Optimal Control of Ordinary Fractional-Order Systems With a Delay in the Phase Variable


Yusubov S. S., Mahmudov E., Yusubov S. S.

Mathematical Methods in the Applied Sciences, 2025 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Nəşr tarixi: 2025
  • Doi nömrəsi: 10.1002/mma.70219
  • jurnalın adı: Mathematical Methods in the Applied Sciences
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, INSPEC, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Açar sözlər: Caputo derivative, fractional optimal control, necessary optimality condition
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Bəli

Qısa məlumat

The paper considers a fractional model described by the Bolza problem of optimal control with delay in the phase variable depending on the fractional Caputo derivative of order (Formula presented.) and the fractional Riemann–Liouville integral of order (Formula presented.). For the problem posed, a necessary optimality condition in the form of the Pontryagin maximum principle is formulated. Moreover, for the control, which is singular, a necessary optimality condition of a higher order is obtained for the first time. Unlike previous works, the results are formulated for both conditions (Formula presented.) and (Formula presented.). The effectiveness of the available results is illustrated by specific examples.