Approximate Controllability Results for Fractional Semilinear Integro-Differential Inclusions in Hilbert Spaces


Creative Commons License

Mahmudov N., Murugesu R., Ravichandran C., Vijayakumar V.

Results in Mathematics, vol.71, no.1-2, pp.45-61, 2017 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 71 Say: 1-2
  • Nəşr tarixi: 2017
  • Doi nömrəsi: 10.1007/s00025-016-0621-0
  • jurnalın adı: Results in Mathematics
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.45-61
  • Açar sözlər: Bohnenblust–Karlin’s fixed point theorem, Fractional integro-differential inclusions, multivalued map, nonlocal conditions, sectorial operators
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this paper, we consider a class of fractional integro-differential inclusions in Hilbert spaces. This paper deals with the approximate controllability for a class of fractional integro-differential control systems. First, we establishes a set of sufficient conditions for the approximate controllability for a class of fractional semilinear integro-differential inclusions in Hilbert spaces. We use Bohnenblust–Karlin’s fixed point theorem to prove our main result. Further, we extend the result to study the approximate controllability concept with nonlocal conditions. An example is also given to illustrate our main result.