Singular Mean-Field Backward Stochastic Volterra Integral Equations in Infinite Dimensional Spaces


Asadzade J. A., Mahmudov N.

Mathematical Methods in the Applied Sciences, vol.48, no.13, pp.13012-13027, 2025 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 48 Say: 13
  • Nəşr tarixi: 2025
  • Doi nömrəsi: 10.1002/mma.11081
  • jurnalın adı: Mathematical Methods in the Applied Sciences
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, INSPEC, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Səhifə sayı: pp.13012-13027
  • Açar sözlər: maximum principle, mean-field backward stochastic Volterra integral equations, mean-field forward stochastic Volterra integral equations, singular kernel
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

This paper investigates the well-posedness of singular mean-field backward stochastic Volterra integral equations (MF-BSVIEs) in infinite-dimensional spaces. We consider the equation, (Formula presented.), where the focus lies on establishing the existence and uniqueness of adapted M-solutions under appropriate conditions. A key contribution of this work is the development of essential lemmas that provide a rigorous foundation for analyzing the well-posedness of these equations. In addition, we extend our analysis to singular mean-field forward stochastic Volterra integral equations (MF-FSVIEs) in infinite-dimensional spaces, demonstrating their solvability and unique adapted solutions. Finally, we strengthen our theoretical results by applying them to derive stochastic maximum principles, showcasing the practical relevance of the proposed framework. These findings contribute to the growing body of research on mean-field stochastic equations and their applications in control theory and mathematical finance.