On Some Spectral Problems for Sturm–Liouville Equation With Operator Coefficients


Aslanova N., Aslanov K., Kocinac L.

Mathematical Methods in the Applied Sciences, 2025 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Nəşr tarixi: 2025
  • Doi nömrəsi: 10.1002/mma.10893
  • jurnalın adı: Mathematical Methods in the Applied Sciences
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, INSPEC, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Açar sözlər: asymptotics of spectrum, eigenvalue dependent boundary conditions, self-adjoint extensions with exit from space, Sturm–Liouville operator equation
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Bəli

Qısa məlumat

We offer a detailed treatment of minimal, maximal, dissipative, accumulative, and self-adjoint operator realizations with exit from space of boundary value problem for the Sturm–Liouville equation with unbounded operator coefficient having discrete spectrum and with boundary condition dependent on the Herglotz–Nevanlinna function of eigenparameter. We also study self-adjoint operator realizations having purely discrete spectrum or having continuous spectrum which coincide with any interval on real axis. That is done in terms of boundary conditions. In addition, in particular case, we obtain asymptotics of spectrum of self-adjoint operators with discrete spectrum.