Approximate Controllability of Second-Order Evolution Differential Inclusions in Hilbert Spaces


Creative Commons License

Mahmudov N., Vijayakumar V., Murugesu R.

Mediterranean Journal of Mathematics, vol.13, no.5, pp.3433-3454, 2016 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 13 Say: 5
  • Nəşr tarixi: 2016
  • Doi nömrəsi: 10.1007/s00009-016-0695-7
  • jurnalın adı: Mediterranean Journal of Mathematics
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.3433-3454
  • Açar sözlər: Approximate controllability, cosine function of operators, evolution equations, impulsive systems, nonlocal conditions, second-order differential inclusions
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this paper, we consider a class of second-order evolution differential inclusions in Hilbert spaces. This paper deals with the approximate controllability for a class of second-order control systems. First, we establish a set of sufficient conditions for the approximate controllability for a class of second-order evolution differential inclusions in Hilbert spaces. We use Bohnenblust–Karlin’s fixed point theorem to prove our main results. Further, we extend the result to study the approximate controllability concept with nonlocal conditions and also extend the result to study the approximate controllability for impulsive control systems with nonlocal conditions. An example is also given to illustrate our main results.