Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems


Mahmudov N.

Journal of Optimization Theory and Applications, vol.184, no.2, pp.671-686, 2020 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 184 Say: 2
  • Nəşr tarixi: 2020
  • Doi nömrəsi: 10.1007/s10957-018-1255-z
  • jurnalın adı: Journal of Optimization Theory and Applications
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Computer & Applied Sciences, INSPEC, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Səhifə sayı: pp.671-686
  • Açar sözlər: Finite-approximate controllability, Fractional evolution systems, Gramian controllability operator, Mittag–Leffler functions, Nonlocal conditions
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this work, we extend a variational approach to study the finite-approximate controllability for Sobolev-type fractional semilinear evolution equations with nonlocal conditions in Hilbert spaces. Assuming the approximate controllability of the corresponding linear equation, we obtain sufficient conditions for the finite-approximate controllability of the Sobolev-type fractional system. We prove that, with one sole control, one can obtain simultaneously approximate controllability and exact reachability of a finite number of constraints. The obtained result is a generalization and continuation of the recent results on this issue. An example is given as an application of our result.