Invariant ideals and their applications to the turnpike theory


MƏMMƏDOV M., Szuca P.

Canadian Mathematical Bulletin, vol.66, no.3, pp.959-975, 2023 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 66 Say: 3
  • Nəşr tarixi: 2023
  • Doi nömrəsi: 10.4153/s0008439523000036
  • jurnalın adı: Canadian Mathematical Bulletin
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, DIALNET
  • Səhifə sayı: pp.959-975
  • Açar sözlər: discrete systems, I-cluster set, I-convergence, optimal control, statistical convergence, turnpike property
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Bəli

Qısa məlumat

In this paper, the turnpike property is established for a nonconvex optimal control problem in discrete time. The functional is defined by the notion of the ideal convergence and can be considered as an analogue of the terminal functional defined over infinite-time horizon. The turnpike property states that every optimal solution converges to some unique optimal stationary point in the sense of ideal convergence if the ideal is invariant under translations. This kind of convergence generalizes, for example, statistical convergence and convergence with respect to logarithmic density zero sets.