Necessary optimality conditions for quasi-singular controls for systems with Caputo fractional derivatives


Yusubov S. S., Mahmudov E.

Archives of Control Sciences, vol.33, no.3, pp.463-496, 2023 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 33 Say: 3
  • Nəşr tarixi: 2023
  • Doi nömrəsi: 10.24425/acs.2023.146955
  • jurnalın adı: Archives of Control Sciences
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, zbMATH, Directory of Open Access Journals
  • Səhifə sayı: pp.463-496
  • Açar sözlər: fractional derivative, fractional optimal control, necessary optimality condition
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Bəli

Qısa məlumat

In this paper, we consider an optimal control problem in which a dynamical system is controlled by a nonlinear Caputo fractional state equation. First we get the linearized maximum principle. Further, the concept of a quasi-singular control is introduced and, on this basis, an analogue of the Legendre-Clebsch conditions is obtained. When the analogue of Legendre-Clebsch condition degenerates, a necessary high-order optimality condition is derived. An illustrative example is considered.