O'Neil Inequality for Convolutions Associated with Gegenbauer Differential Operator and some Applications


Creative Commons License

Guliyev V. S., Ibrahimov E. J., Ekincioglu S. E., Jafarova S.

JOURNAL OF MATHEMATICAL STUDY, vol.53, no.1, pp.90-124, 2020 (ESCI) identifier identifier

  • Nəşrin Növü: Article / Article
  • Cild: 53 Say: 1
  • Nəşr tarixi: 2020
  • Doi nömrəsi: 10.4208/jms.v53n1.20.05
  • jurnalın adı: JOURNAL OF MATHEMATICAL STUDY
  • Jurnalın baxıldığı indekslər: Emerging Sources Citation Index (ESCI), Scopus
  • Səhifə sayı: pp.90-124
  • Adres: Bəli

Qısa məlumat

In this paper we prove an O'Neil inequality for the convolution operator (G-convolution) associated with the Gegenbauer differential operator G(lambda). By using an O'Neil inequality for rearrangements we obtain a pointwise rearrangement estimate of the G-convolution. As an application, we obtain necessary and sufficient conditions on the parameters for the boundedness of the G-fractional maximal and G-fractional integral operators from the spaces L-p,L-lambda to L-q,L-lambda and from the spaces L-1,L-lambda to the weak spaces WLp,lambda.