Perturbation theory for fractional evolution equations in a Banach space


Creative Commons License

Ahmadova A., Huseynov I., Mahmudov N.

Semigroup Forum, vol.105, no.3, pp.583-618, 2022 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 105 Say: 3
  • Nəşr tarixi: 2022
  • Doi nömrəsi: 10.1007/s00233-022-10322-1
  • jurnalın adı: Semigroup Forum
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Səhifə sayı: pp.583-618
  • Açar sözlər: Fractional evolution equation, Perturbation theory, Strongly continuous fractional cosine and sine families, Well-posedness
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

A strong inspiration for studying perturbation theory for fractional evolution equations comes from the fact that they have proven to be useful tools in modeling many physical processes. We study fractional evolution equations of order α∈ (1 , 2) associated with the infinitesimal generator of an operator fractional cosine (sine) function generated by bounded time-dependent perturbations in a Banach space. We show that the fractional abstract Cauchy problem associated with the infinitesimal generator A of a strongly continuous fractional cosine (sine) function remains uniformly well-posed under bounded time-dependent perturbation of A. We also provide some necessary special cases by using the Laplace transform of the generators of the given operator families.