EXISTENCE AND STABILITY RESULTS ON MULTIDIMENSIONAL FRACTIONAL-ORDER SYSTEMS


Ahmadova A., Huseynov I. T., Mahmudov N.

Rocky Mountain Journal of Mathematics, vol.52, no.1, pp.1-14, 2022 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 52 Say: 1
  • Nəşr tarixi: 2022
  • Doi nömrəsi: 10.1216/rmj.2022.52.1
  • jurnalın adı: Rocky Mountain Journal of Mathematics
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, DIALNET
  • Səhifə sayı: pp.1-14
  • Açar sözlər: Caputo fractional derivative, existence and uniqueness, incommensurate fractional-order system, Mittag-Leffler functions, multidimensional fractional differential equations system, Ulam-Hyers stability
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

The novelties of this paper is the study of existence and uniqueness results for a class of incommensurate fractional differential equation systems with general multiorders using the weighted infinity norm with respect to the classical Mittag-Leffler function via the contraction mapping principle. The lack of stability results in the Ulam-Hyers sense on fractional multidimensional differential equations motivates us to generalize our theory to stability analysis based on fixed point approach.