RESULTS IN MATHEMATICS, vol.77, no.6, 2022 (SCI-Expanded)
In this paper, the Cauchy problem for linear and nonlinear wave equations is studied.The equation involves an abstract operator A in a Hilbert space H and a convolution term. Here, assuming sufficient smoothness on the initial data and on coefficients, the existence, uniqueness, regularity properties, and blow-up of solutions are established in terms of fractional powers of a given sectorial operator A. We obtain the regularity properties of a wide class of wave equations by choosing a space H and an operator A that appear in the field of physics.