Is there consistency in ethical sensitivity in artificial intelligence? A review of language models.


Creative Commons License

Tutar H., Svitlana B., Şentürk Ü.

Human Technology, vol.21, no.2, pp.317-338, 2025 (ESCI, Scopus)

Qısa məlumat

This study examines the structural and content consistency of large language models  (LLMs)  in  ethical  decision  making  with  a  qualitative  approach.  Responses  to basic ethical themes such as “justice”, “non-maleficence”, “autonomy”, “impartiality”, and “goodness” were evaluated using the thematic analysis method of Braun and Clarke (2006).   The   three-stage   coding   process   analyzed   empathy   patterns,   contextual transitions,  and  relationships  between  themes.  The  findings,  supported  by  Python-supported  frequency  and  variation  analyses,  revealed  that  the  models  exhibited  high empathy  and  solution  determination  in  the  themes  of  “inclusiveness”  and “communication”  but  low  structural  consistency  in  the  themes  of  “religion”  and “disability”.  The  responses  to  the  same  ethical  theme  in  different  contexts  were determined   to   carry   semantic   shifts.   This   original   study   emphasizes   that   ethical sensitivity should be evaluatedased on patterns.