Explicit analytical solutions of incommensurate fractional differential equation systems


Huseynov I. T., Ahmadova A., Fernandez A., Mahmudov N.

Applied Mathematics and Computation, vol.390, 2021 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 390
  • Nəşr tarixi: 2021
  • Doi nömrəsi: 10.1016/j.amc.2020.125590
  • jurnalın adı: Applied Mathematics and Computation
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Computer & Applied Sciences, INSPEC, Public Affairs Index, zbMATH, Civil Engineering Abstracts
  • Açar sözlər: Bivariate Mittag-Leffler functions, Caputo fractional derivative, Fractional differential equation systems, Incommensurate system
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

Fractional differential equations have been studied due to their applications in modelling, and solved using various mathematical methods. Systems of fractional differential equations are also used, for example in the study of electric circuits, but they are more difficult to analyse mathematically. We present explicit solutions for several families of such systems, both homogeneous and inhomogeneous cases, both commensurate and incommensurate. The results can be written, in several interesting special cases, in terms of a recently defined bivariate Mittag-Leffler function and the associated operators of fractional calculus.