Well-posedness of nonlocal Ginzburg–Landau type equations


Shakhmurov V., Shahmurov R.

European Journal of Mathematics, vol.10, no.4, 2024 (ESCI) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 10 Say: 4
  • Nəşr tarixi: 2024
  • Doi nömrəsi: 10.1007/s40879-024-00772-y
  • jurnalın adı: European Journal of Mathematics
  • Jurnalın baxıldığı indekslər: Emerging Sources Citation Index (ESCI), Scopus, MathSciNet, zbMATH
  • Açar sözlər: 35B35, 35B40, 35B41, 35B65, 35J50, 35Q35, Diffusion equations, Embedding in Sobolev spaces, Fourier multipliers, Ginzburg–Landau equation, Lp-regularity property of solutions
  • Adres: Yox

Qısa məlumat

The Cauchy problem for linear and nonlinear Ginzburg–Landau type equations is studied. The equation includes variable coefficients with convolution terms. Assuming enough smoothness of the initial data and certain growth conditions on coefficients, the existence, uniqueness of local and global solution, Lp-regularity, and blow-up properties of solutions are established.