Generalization of Szász–Mirakjan operators and their approximation properties


Mahmudov N., Kara M.

Journal of Analysis, vol.33, no.4, pp.1687-1710, 2025 (ESCI, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 33 Say: 4
  • Nəşr tarixi: 2025
  • Doi nömrəsi: 10.1007/s41478-025-00890-0
  • jurnalın adı: Journal of Analysis
  • Jurnalın baxıldığı indekslər: Emerging Sources Citation Index (ESCI), Scopus
  • Səhifə sayı: pp.1687-1710
  • Açar sözlər: Modulus of continuity, Szász–Mirakjan operators, Weighted approximation
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this article, we introduce new generalization of Szász–Mirakjan operators. First, we give the recurrence relationship for the moments of these operators and present the central moments up to the fourth degree. Then, we give the local approximation properties of these operators through Peetre’s K-function. Furthermore, we investigate rate of convergence by using modulus of continuity and Lipschitz type maximal functions. Then, we investigate approximation properties of these operators on weighted space. Also, we prove voronoskaja type theorem. Additionally, the bivariate type of these operators is introduced, and the approximate behaviors of these operators are examined. Finally, we give some numerical illustrative examples.