A novel technique for solving Sobolev-type fractional multi-order evolution equations


Mahmudov N., Ahmadova A., Huseynov I. T.

Computational and Applied Mathematics, vol.41, no.2, 2022 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 41 Say: 2
  • Nəşr tarixi: 2022
  • Doi nömrəsi: 10.1007/s40314-022-01781-x
  • jurnalın adı: Computational and Applied Mathematics
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Computer & Applied Sciences, zbMATH
  • Açar sözlər: Caputo fractional differentiation operator, Evolution equations, Mittag-Leffler-type functions, Nonpermutable linear operators, Sobolev
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

A strong inspiration for studying Sobolev-type fractional evolution equations comes from the fact that have been verified to be useful tools in the modeling of many physical processes. We introduce a novel technique for solving Sobolev-type fractional evolution equations with multi-orders in a Banach space. We propose a new Mittag-Leffler-type function which is generated by linear bounded operators and investigate their properties which are productive for checking the candidate solutions for multi-term fractional differential equations. Furthermore, we propose an exact analytical representation of solutions for multi-dimensional fractional-order dynamical systems with nonpermutable and permutable matrices.