Moment-based approximation for a renewal reward process with generalized gamma-distributed interference of chance


Yazlr T., Kamlşllk A. B., Khaniyev T., Hanalioglu Z.

Demonstratio Mathematica, vol.58, no.1, 2025 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 58 Say: 1
  • Nəşr tarixi: 2025
  • Doi nömrəsi: 10.1515/dema-2025-0153
  • jurnalın adı: Demonstratio Mathematica
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Linguistic Bibliography, MathSciNet, zbMATH, Directory of Open Access Journals
  • Açar sözlər: ergodic distribution, generalized gamma distribution, moment-based approximation, renewal reward process
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

This study investigates the renewal reward process under the assumption that the random variables describing the discrete interference of chance follow a generalized gamma distribution. A moment-based approximation method is employed to derive novel results for the renewal function, enabling an approximation of the ergodic distribution of the process. Furthermore, the limiting distribution of the ergodic distribution is also derived. The theoretical findings are illustrated through a specific example in which the demand random variable η1 is represented by a third-order Erlang distribution with parameter θ = 1.