On the moments of a semi-Markovian random walk with Gaussian distribution of summands


Aliyev R., Khaniyev T.

Communications in Statistics - Theory and Methods, vol.43, no.1, pp.90-104, 2014 (SCI-Expanded, Scopus) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 43 Say: 1
  • Nəşr tarixi: 2014
  • Doi nömrəsi: 10.1080/03610926.2012.655877
  • jurnalın adı: Communications in Statistics - Theory and Methods
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.90-104
  • Açar sözlər: Asymptotic expansion, Discrete interference of chance, Ergodic distribution, Gaussian distribution, Moments, Riemann zeta-function, Semi-Markovian random walk
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this article, a semi-Markovian random walk with delay and a discrete interference of chance (X(t)) is considered. It is assumed that the random variables ζn, n = 1, 2,., which describe the discrete interference of chance form an ergodic Markov chain with ergodic distribution which is a gamma distribution with parameters (α, λ). Under this assumption, the asymptotic expansions for the first four moments of the ergodic distribution of the process X(t) are derived, as λ → 0. Moreover, by using the Riemann zeta-function, the coefficients of these asymptotic expansions are expressed by means of numerical characteristics of the summands, when the process considered is a semi-Markovian Gaussian random walk with small drift β. © 2014 Copyright Taylor and Francis Group, LLC.