Qualitative properties of fractional convolution elliptic and parabolic operators in Besov spaces


Creative Commons License

Shakhmurov V., Shahmurov R.

FRACTIONAL CALCULUS AND APPLIED ANALYSIS, vol.27, no.4, pp.1579-1595, 2024 (SCI-Expanded) identifier identifier

  • Nəşrin Növü: Article / Article
  • Cild: 27 Say: 4
  • Nəşr tarixi: 2024
  • Doi nömrəsi: 10.1007/s13540-024-00302-3
  • jurnalın adı: FRACTIONAL CALCULUS AND APPLIED ANALYSIS
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, zbMATH
  • Səhifə sayı: pp.1579-1595
  • Adres: Yox

Qısa məlumat

The maximal B-p,q(s)-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in B-p,q(s) and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the B-p,q(s)-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.