ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, vol.15, no.3, 2024 (ESCI)
Ferromagnetism in single-walled (6,0) GaN(SiC):Ag nanotubes were studied based on ab initio simulations within a pseudopotential method. For the GaN:Ag single-walled nanosystems, the width of the band gap reduces with the increase of dopant concentration. While Ag-doped SiC nanotubes, the band gap of majority-spin states decrease and these systems show metallic character. The first-principles results of total energies for SiC(GaN):Ag nanotubes predicted the stability of the ferromagnetic and antiferromagnetic phase, respectively. The obtained values of total magnetic moments of Ag-GaN and Ag-SiC systems are similar to 2.0 and similar to 3.2 mu(B), respectively. The analysis of the results of density of states show the significant contribution to the magnetization of both defected GaN:Ag and SiC:Ag systems come from three nitrogen and carbon atoms which are bonded with the dopant. First-principles investigation, suggest that the SiC(GaN):Ag nanotubes can be made into magnetic materials, and these are promising candidates for electronic, optoelectronic, and spintronic devices.