Asymptotic properties of powers of linear positive operators which preserve e2


Mahmudov N.

Computers and Mathematics with Applications, vol.62, no.12, pp.4568-4575, 2011 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 62 Say: 12
  • Nəşr tarixi: 2011
  • Doi nömrəsi: 10.1016/j.camwa.2011.10.036
  • jurnalın adı: Computers and Mathematics with Applications
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.4568-4575
  • Açar sözlər: Bernstein operators, Degree of approximation, Genuine BernsteinDurrmeyer operators, Iterates of operators, King type operators, Modulus of smoothness
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this paper we prove Korovkin type theorem for iterates of general positive linear operators T:C[0,1]→C[0,1] which preserve e2 and derive quantitative estimates in terms of moduli of smoothness. The results can be applied to several well-known operators; we present here the Bernstein, the q-Bernstein, the genuine BernsteinDurrmeyer and the genuine q-BernsteinDurrmeyer operators. © 2011 Elsevier Ltd. All rights reserved.