Approximate controllability of semilinear functional equations in Hilbert spaces


Dauer J., Mahmudov N.

Journal of Mathematical Analysis and Applications, vol.273, no.2, pp.310-327, 2002 (SCI-Expanded) identifier

  • Nəşrin Növü: Article / Article
  • Cild: 273 Say: 2
  • Nəşr tarixi: 2002
  • Doi nömrəsi: 10.1016/s0022-247x(02)00225-1
  • jurnalın adı: Journal of Mathematical Analysis and Applications
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.310-327
  • Açar sözlər: Approximate controllability, Banach fixed point theorem, Complete controllability, Schauder fixed point theorem, Semilinear functional equations, Weak approximate controllability
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Yox

Qısa məlumat

In this paper approximate and complete controllability for semilinear functional differential systems is studied in Hilbert spaces. Sufficient conditions are established for each of these types of controllability. The results address the limitation that linear systems in infinite-dimensional spaces with compact semigroup cannot be completely controllable. The conditions are obtained by using the Schauder fixed point theorem when the semigroup is compact and the Banach fixed point theorem when the semigroup is not compact. © 2002 Elsevier Science (USA). All rights reserved.