Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthen and Yukawa potentials


Ahmadov A., Aslanova S. M., Orujova M., Badalov S., Doug S.

PHYSICS LETTERS A, vol.383, no.24, pp.3010-3017, 2019 (SCI-Expanded, Scopus) identifier identifier

  • Nəşrin Növü: Article / Article
  • Cild: 383 Say: 24
  • Nəşr tarixi: 2019
  • Doi nömrəsi: 10.1016/j.physleta.2019.06.043
  • jurnalın adı: PHYSICS LETTERS A
  • Jurnalın baxıldığı indekslər: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Səhifə sayı: pp.3010-3017
  • Açıq Arxiv Kolleksiyası: Məqalə
  • Adres: Bəli

Qısa məlumat

Based on a developed scheme we show how to deal with the centrifugal term and the Coulombic behavior part and then to solve the Klein-Gordon (KG) equation for the linear combination of Hulthen and Yukawa potentials. Two cases, i.e., the scalar potential which is equal and unequal to vector potential, are considered for arbitrary I state. With the aid of the Nikiforov-Uvarov (NU) method and the traditional approach, we present the eigenvalues and the corresponding radial wave functions expressed by the Jacobi polynomials or hypergeometric functions and find that the results obtained by them are consistent. For given values of potential parameters V-0, V-0', S-0, S-0' and M = 1, we notice that the energy levels E are sensitively relevant for the potential parameter delta and the energy levels E increase for delta > 0.1 as quantum numbers nr and I increase. However, for delta is an element of (0, 0.1) the energy levels E do not always increase with the quantum numbers n(r) and I. We find that the energy levels E are inversely proportional to quantum numbers nr and 1 when delta is an element of (0, 0.05). (C) 2019 Elsevier B.V. All rights reserved.